Math 25
Fall 2017
Lecture 10

Class Quiz
(1) find the first 4 terms of

$$
\begin{array}{ccc}
\{2 n+1\}_{n=1}^{4} & n=1 & a_{1}=2(1)+1=3 \\
n=2 & a_{2}=2(2)+1=5 \\
3,5,7,9 & n=3 & a_{3}=2(3)+1=7 \\
& n=4 & a_{4}=2(4)+1=9
\end{array}
$$

(2) Find the sum: $\sum_{n=1}^{4}\left(n^{2}-1\right)$

$$
\begin{aligned}
& =\left(1^{2}-1\right)+\left(2^{2}-1\right)+\left(3^{2}-1\right)+\left(4^{2}-1\right) \\
& n=1 \quad n=2 \quad n=4 \\
& =0+3+8+15=26
\end{aligned}
$$

Ch. 8
Factorials

$$
\begin{aligned}
& n!=n(n-1)(n-2)(n-3) \cdots \cdot 3 \cdot 2 \cdot 1 \\
& 6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720 \\
& \frac{12!}{5!}=\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5!}{5!} \\
&=12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6=
\end{aligned}
$$

By Def.: $0!=1$

Simplify:

$$
\begin{aligned}
\frac{8!}{5!\cdot 3!} & =\frac{8 \cdot 7 \cdot 6 \cdot 5!}{5!\cdot 3 \cdot 2 \cdot 1} \\
& =8 \cdot 7=56
\end{aligned}
$$

Simplify: $\frac{(2 n+1)!}{(2 n)!}=\frac{(2 n+1) \cdot(2 n)!}{(2 n)!}=2 n+1$

$$
\begin{aligned}
& a_{n}=\frac{(n+2)!}{n!} \quad \text { find the first } 4 \text { terms. } \\
& a_{1}=\frac{3!}{1!}=\frac{6}{1}=6 \quad a_{2}=\frac{4!}{2!}=\frac{4 \cdot 3 \cdot 2!}{2!}=12 \\
& a_{3}=\frac{5!}{3!}=\frac{5 \cdot 4 \cdot 3!}{3!}=20 \quad a_{4}=\frac{6!}{4!}=\frac{6 \cdot 5 \cdot 4!}{4!}=30
\end{aligned}
$$

$a_{n}=\frac{(n+3)!}{(n-1)!} \quad$ find a_{1} and a_{10}.

$$
\begin{aligned}
& a_{1}=\frac{(1+3)!}{(1-1)!}=\frac{4!}{\underbrace{!}_{\text {By Def. }}}=\frac{24}{1}=24 \\
& a_{10}=\frac{(10+3)!}{(10-1)!}=\frac{13!}{9!}=\frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9!}{9!} \\
& =17160
\end{aligned}
$$

find the first 5 terms of the sequence defined by $a_{n}=4 a_{n-1}-1, a_{1}=5$

$$
\begin{aligned}
& a_{1}=5 \\
& a_{2}=4 a_{1}-1=4(5)-1=19 \\
& a_{3}=4 a_{2}-1=4(19)-1=75 \\
& a_{4}=4 a_{3}-1=4(75)-1=299 \\
& a_{5}=4 a_{4}-1=4(299)-1=1195
\end{aligned}
$$

Given $\quad a_{n}=2 n+5$
(1) write the first 4 terms.

$$
7,9,11,13
$$

(2) find $a_{50}=2(50)+5=105$
(3) Is this an arithmetic sequence? if Yes Give a_{1} घ, d Yes, Common

$$
a_{1}=7, d=2
$$

(4) find S_{50} difference

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left[a_{1}+a_{n}\right] S_{50} \frac{50}{2}[7+105] \\
& =25(112) \\
& =2800
\end{aligned}
$$

Consider

$$
3,10,17, \ldots, 437
$$

1) Is this an arithmetic sequence? Yes
2) find a_{1} غ. d. $\quad a_{1}=3, \quad d=10-3=7$

$$
d=17-10=7
$$

$$
d=7
$$

3) find a general formula for the $\underbrace{n \text {th term. }}_{a_{n}}$

$$
\left.\left.\begin{array}{rl}
a_{n} & =a_{1}+(n-1) d \\
& =3+(n-1) \cdot 7=3+7 n-7
\end{array}\right)=7 n-4\right)
$$

4) find a_{20}

$$
\begin{aligned}
& a_{n}=7 n-4 \\
& a_{20}=7(20)-4=136
\end{aligned}
$$

5) what term is 437?

$$
\begin{array}{r}
a_{n}=437 \\
7 n-4=437
\end{array} \quad \begin{array}{r}
7 n=441 \\
n=\frac{441}{7} \quad n=63 \\
a_{63}=437
\end{array}
$$

6) find S_{100}

$$
\begin{aligned}
S_{n}=\frac{n}{2}\left[a_{1}+a_{n}\right] \quad S_{n} & =\frac{n}{2}\left[2 a_{1}+(n-1) d\right] \\
S_{100} & =\frac{100}{2}[2 \cdot 3+(100-1) 7] \\
& =50[6+700-7] \\
& =50[699] \\
& S_{100}=34950
\end{aligned}
$$

$$
\text { Find the Sum: } \sum_{n=1}^{40}(2-5 n)
$$

$$
a_{1}=2-5(1)=-3
$$

Arithmetic sequence

$$
a_{2}=2-5(2)=-8 \Rightarrow a_{1}=-3, d=-5
$$

$$
a_{3}=2-5(3)=-13
$$

Now we need to

$$
\begin{aligned}
& \begin{array}{l}
S_{40}=\frac{4_{0}^{4}}{2}\left[2\left(-\frac{d_{1}}{2}\right)+\left(d^{n}-\frac{d}{40}-1\right) \cdot(-5)\right]=20[-6-200+5]
\end{array} \\
& =20[-201]=--4020
\end{aligned}
$$

How long does it take to pay off a loan of $\$ 3960$ if we pay $\$ 50$ first month, $\$ 60$ Second month, $\$ 70$ third month, and So on.

$$
\begin{aligned}
& 50,60,70, \ldots \\
& 50+60+70+\cdots
\end{aligned}=3960
$$

How many payments?
Arithmetic sequence $a_{1}=50, d=10$ find n where $S_{n}=3960$

$$
\begin{aligned}
& S_{n}=\frac{n}{2}\left[a_{1}+a_{n}\right] \\
& S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right] \\
& 3960=\frac{n}{2}[2 \cdot 50+(n-1) \cdot 10] \\
& 3960=\frac{n}{2}[100+10 n-10] \\
& 3960=\frac{n}{2}[96+16 n] \\
& 3960=n(5 n+45) \\
& L
\end{aligned} \quad \text { Divisible by } 5
$$

$$
\begin{aligned}
792= & n(n+9) \\
& n^{2}+9 n-792=0
\end{aligned}
$$

using Quadratic formula

$$
\begin{aligned}
& a=1 \quad b=9 \quad c=-792 \\
& b^{2}-4 a c=9^{2}-4(1)(-792)=3249 \\
& n=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-9 \pm \sqrt{3249}}{2}=\frac{-9 \pm 57}{2} \\
& n=\frac{-9+57}{2}=\frac{48}{2}=24 \quad n=\frac{-97}{2}=-\#
\end{aligned}
$$

24 monthly Payments.
not applicable

Given $5,10,20, \ldots$
(1) write the next 4 terms

$$
5,10,20,40,80,160,320 \ldots
$$

(2) what kind of Sequence? Arithmetic or Geometric

$$
a_{1}=5, \quad \underset{\text { ratio }}{\text { Common }} \Rightarrow r=2
$$

a_{1} first Term r Common ratio
$a_{n} n$th term S_{n} sum of first $a_{n}=a_{1} \cdot r^{n-1} \quad \begin{gathered}n \text { Sum of first } \\ n \text { term. } S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}\end{gathered}$
(3) find a_{10}

$$
=5.2^{9} \Rightarrow a_{10}=2560
$$

(4) find $S_{10} \quad S_{10}=\frac{a_{1}\left(1-r^{10}\right)}{1-r}$

$$
S_{10}=\frac{5\left(1-2^{10}\right)}{1-2} \quad S_{10}=5115
$$

Consider a geometric sequence with

$$
a_{1}=4, \quad a_{2}=12
$$

1) find common ratio r.

$$
r=\frac{a_{2}}{a_{1}}=3
$$

2) find

$$
\text { 2) find } \begin{aligned}
& a_{6} \quad \begin{aligned}
a_{6} & =a_{1} \cdot r^{6-1} \\
& =4 \cdot 3^{5}
\end{aligned}=972 \\
& \text { 3) Find } S_{8} \\
& S_{8}=\frac{a_{1}\left(1-r^{8}\right)}{1-r}=\frac{4\left(1-3^{8}\right)}{1-3}=-2\left(1-3^{8}\right) \\
&=13120
\end{aligned}
$$

Consider a geometric Sequence with

$$
a_{1}=-15, \quad a_{4}=\frac{-5}{9}
$$

1) find the common ratio r. we know $a_{n}=a_{1} \cdot r^{n-1} \quad a_{4}=a_{1} \cdot r^{3}$
2) find a_{6}
3) find S_{7}

$$
\begin{aligned}
& a_{6}=a_{1} \cdot r^{5} \\
& =-15\left(\frac{1}{3}\right)^{5} \\
& \left.a_{6}=-\frac{5}{81} \quad \begin{array}{l}
-\frac{5}{9}=-15 r^{3} \\
r^{3}=\frac{-5 / 9}{-15} \\
r^{3}=\frac{7}{27} \\
r=\frac{1}{3}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& S_{7}=\frac{-15\left(1-\left(\frac{1}{3}\right)^{7}\right)}{1-\frac{1}{3}}=\frac{-15\left(1-\frac{1}{3^{7}}\right)}{\frac{2}{3}} \\
&=\frac{-45}{2}\left(1-\frac{1}{37}\right) \\
&=\frac{-5465}{243}
\end{aligned}
$$

Consider the sequence

$$
a_{1}, a_{1} r, a_{1} r^{2}, a_{1} r^{3}, \ldots
$$

If add the terms

$$
a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\cdots
$$

Infinite Geometric Series
If $|r|<1$, then the sum of the terms $S=\frac{a_{1}}{1-r}$
If $|r| \geq 1$, there is no sum.
find the Sum

$$
\begin{array}{rlr}
1000+500+250+\cdots \\
S_{\infty} & =S=\frac{a_{1}}{1-r} & a_{1}=1000 \\
S & =\frac{1000}{1-\frac{1}{2}} & r=\frac{500}{1000}=\frac{1}{2} \\
& & r=\frac{250}{500}=\frac{1}{2} \\
& =\frac{1000}{1 / 2}=2000 &
\end{array}
$$

find $\cdot \overline{3}$ in fraction.

$$
\begin{aligned}
& . \overline{3}= .333333 \ldots \\
&=.3+.03+.003+.0003+\cdots \\
& a_{1}=.3 \quad r=\frac{.03}{.3}=\frac{.03}{.30}=\frac{3}{30}=\frac{1}{10} \\
& S=\frac{a_{1}}{1-r}=\frac{.3}{1-\frac{1}{10}}=\frac{.3}{\frac{9}{10}}=\frac{.3 \cdot 10}{9} \\
&=\frac{3}{9}=\frac{1}{3} \\
&=\frac{1}{3}
\end{aligned}
$$

write $1.8 \overline{25}$ as a reduced fraction

$$
\begin{aligned}
& 1.8 \overline{25}=1.8252525252525 \ldots \\
&=1.8+\underbrace{.025+.00025+.0000025 t} \\
&=1.8+\frac{5}{198} \begin{array}{l}
a_{1}=.025 \\
r=\frac{.00025}{.025}=\frac{.00025}{.02500} \\
\end{array}=\frac{25}{2500}=\frac{1}{100} \\
&=\frac{18}{10}+\frac{5}{198} \begin{aligned}
S & =\frac{.025}{1-\frac{1}{100}}=\frac{.025}{\frac{99}{100}}=\frac{2.5}{99}
\end{aligned} \\
&=\frac{1807}{990}=\frac{25}{990}=\frac{5}{198}
\end{aligned}
$$

write $.7 \overline{8}$ in reduced fraction.

$$
\begin{aligned}
.7 \overline{8} & =.788888 \cdots \\
& =.7+.088888888 \cdots \\
& =.7+.08+.008+.0008+.00008+\ldots \\
& =.7+\frac{.08}{1-\frac{1}{10}} \\
& =\frac{7}{10}+\frac{.08}{\frac{9}{10}}=\frac{7}{10}+\frac{.8}{9}=\frac{7}{10}+\frac{8}{90} \\
& =\frac{71}{90}=.7 \overline{8}
\end{aligned}
$$

Mathematical Induction working with mathemical statement P_{n}, n is a positive integer.
To show that it works

1) we verify that P_{1} works
2) we assume that P_{k} works, then we show that P_{K+1} works.

Prove by mathematical induction:

$$
\begin{array}{cc}
2+6+10+\cdots+(4 n-2)=2 n^{2} \\
P_{1} \rightarrow n=1 & \text { LBS } \\
2 H S \\
P_{2} \rightarrow n=2 & 2+6=2(1)^{2} \checkmark \\
P_{3} \rightarrow n=3 & 2+6+10=2(3)^{2} \checkmark
\end{array}
$$

Assume P_{k} works

$$
\begin{aligned}
& \text { um Works } \\
& 2+6+10+\cdots+(4 k-2)=2 k^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Add the next term } \\
& 2+6+10+\cdots+(4 k-2)+(4 k+2)=2 k^{2}+ \\
& 4 k+2 \\
& \overbrace{2+6+10+\cdots+(4 k-2)+(4 k+2)}^{k+\cdots k^{2}}=2 k^{2}+4 k+2 \\
& \text { \# of terms } \\
& k+1 \\
& =2\left(k^{2}+2 k+1\right) \\
& =2(k+1)^{2}
\end{aligned}
$$

Prove by mathematical induction:

$$
\begin{array}{ll}
1+3^{2}+3^{2}+3^{3^{2}}+\cdots+3^{n-1}=\frac{1}{2}\left(3^{n}-1\right) \\
a_{n}=3^{n-1} \\
a_{1}=3^{1-1}=3^{0}=1 & a_{3}=3^{3-1}=3^{2} \\
a_{2}=3^{2-1}=3^{1}=3 & a_{4}=3^{4-1}=3^{3} \\
\text { Check } P_{1} & \text { LHS } \quad \text { RUS } \\
P_{1} \rightarrow n=1 & 1=\frac{1}{2}\left(3^{1}-1\right) \\
P_{2} \rightarrow n=2 & 1+3=\frac{1}{2}\left(3^{2}-1\right)
\end{array}
$$

Assume it works for P_{k}

$$
1+3+3^{2}+3^{3}+\cdots+3^{k-1}=\frac{1}{2}\left(3^{k}-1\right)
$$

Add the next term of pattern to both sides

$$
\begin{aligned}
& 1+3^{\text {both Sides }}+3^{2}+3^{3}+\cdots+3^{k-1}+3^{k}=\frac{1}{2}\left(3^{k}-1\right)+3^{k} \\
& r=\frac{1}{2}\left(3^{k}-1\right)+\frac{2}{2} \cdot 3^{k}=\frac{1}{2}\left(3^{k}-1\right)+\frac{1}{2} \cdot 2 \cdot 3^{k} \\
& =\frac{1}{2}\left[3^{k}-1+2 \cdot 3^{k}\right]=\frac{1}{2}\left[3 \cdot 3^{k}-1\right]=\frac{1}{2}\left(3^{k+1}-1\right)
\end{aligned}
$$

Show that $5^{n}-1$ is divisible by 4. this means $5^{n}-1=$ Some number. 4 6 is divisible by $2 \Rightarrow 6=3 \cdot 2$ $96-1 \Rightarrow 9 \Rightarrow 96=24.4$
So we need to show $s^{n-1}=N \cdot 4$

$$
\begin{array}{ll}
n=1 & 5^{1}-1=5-1=4=1 \cdot 4 \\
n=2 & 5^{2}-1=25-1=24=6 \cdot 4 \\
n=3 & 5^{3}-1=125-1=124=31 \cdot 4
\end{array}
$$

assume it works for $n=k$

$$
5^{k}-1=N \cdot 4 \leftarrow
$$

we need to show now that

$$
\begin{aligned}
& 5^{k+1}-1=M \cdot 4 \\
& 5 \cdot 5^{k}-1=(4+1) 5^{k}-1 \\
&=4 \cdot 5^{k}+1 \cdot 5^{k}-1 \\
&=4 \cdot 5^{k}+5^{k}-1 \\
&=4 \cdot 5^{k}+m \cdot 4 \\
&=\left(5^{k}+m\right) \cdot 4 \\
& \text { isle by } 4 . \\
& 5^{k+1}-1=\# \cdot 4
\end{aligned}
$$

So $5^{n}-1$ is divisible by 4.

Binomial Thrm

$$
\begin{aligned}
& (a+b)^{2} \\
& (a+b)^{1}=a+b \\
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=1 \\
& (a+b)^{4}=a^{4}+3 a^{2} b+3 a a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}
\end{aligned}
$$

If we work with Coifs.

$$
1
$$

Binomial coif. $\binom{n}{r}=\frac{n!}{r!\cdot(n-r)!}$
In Your scale.

$$
\begin{aligned}
& { }_{n} C_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!} \\
& \text { find }{ }_{5} c_{2}=\binom{5}{2}=\frac{5!}{2!\cdot(5-2)!}=\frac{5!}{2 \cdot 3!}
\end{aligned}
$$

Binomial Thrm

$$
\begin{aligned}
& \begin{array}{r}
(a+b)^{n}=\binom{n}{0} a^{n} b^{0}+\binom{n}{1} a^{n-1} b^{1}+\binom{n}{2} a^{n-2} b^{2} \\
\\
\hline \text { find the first } 3 \text { terms of }\binom{n}{3} a^{n-3} b^{3}+\cdots+\binom{n}{n} a^{0} b^{n}
\end{array} \\
& \text { expansion } \\
& \begin{aligned}
(a+b)^{8} & =\binom{8}{0} a^{8} b^{0}+\binom{8}{1} a^{7} b^{1}+\binom{8}{2} a^{6} b^{2} \\
& =1 a^{8}+8 a^{7} b+28 a^{6} b^{2}
\end{aligned}
\end{aligned}
$$

find the 6 th term of expansion of

$$
\begin{aligned}
& (a+b)^{14} \cdot\binom{14}{5} a^{9} b^{5} \\
& =2002 a^{9} b^{5}
\end{aligned}
$$

find the tenth term of

$$
\left(y^{3}+2 z^{2}\right)^{14}
$$

find roth term of $(a+b)^{14}$

$$
\begin{aligned}
&\binom{14}{9} a^{5} b^{9} \Rightarrow 2002\left(y^{3}\right)^{5}\left(2 z^{2}\right)^{9} \\
&=2002 \cdot y^{15} \cdot 2^{9} \cdot z^{18} \\
&=1025024 y^{15} z^{18}
\end{aligned}
$$

for $|x|<1$

$$
\begin{aligned}
& (1+x)^{n}=1+n x+\frac{n(n-1) x^{2}}{2!}+\frac{n(n-1)(n-2) x^{3}}{3!} \\
& (1.5)^{3}=\int 3.375 \\
& (1+.5)^{3}=1+3(.5)+\frac{3(3-1)(.5)^{2}}{2!}+\frac{3(3-1)(3-2)(.5)^{3}}{3!} \\
& =1+1.5+3(.5)^{2}+1 \cdot(.5)^{3}+\cdots \\
& =1+1.5+.75+.125 \approx 3.375
\end{aligned}
$$

