

Class Quiz

① find the first 4 terms of
$$2n+1$$
 4 $m=1$ $0.1=2(1)+1=3$ $2n+1$ $n=2$ $0.2=2(2)+1=5$ $n=3$ $0.3=2(3)+1=7$ $n=4$ $0.4=2(4)+1=9$

(a) find the sum:
$$\sum_{N=1}^{4} (N^2-1)$$

$$= (1^{2}-1) + (2^{2}-1) + (3^{2}-1) + (4^{2}-1)$$

$$= 0 + 3 + 8 + 15 = 26$$

Ch. 8

Factorials

$$n! = n(n-1)(n-2)(n-3) - ... 3 \cdot 2 \cdot 1$$
 $6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$
 $\frac{12!}{5!} = \frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 = 12}{5!}$

By Def.: $0! = 1$

Simplify:
$$\frac{8!}{5! \cdot 3!} = \frac{8 \cdot 7 \cdot 8 \cdot 5!}{5! \cdot 3 \cdot 2 \cdot 1}$$

 $= 8 \cdot 7 = 56$
Simplify: $\frac{(2n+1)!}{(2n)!} = \frac{(2n+1) \cdot (2n)!}{(2n)!} = 2n+1$
 $\alpha_n = \frac{(n+2)!}{n!}$ find the first 4 terms.
 $\alpha_1 = \frac{3!}{1!} = \frac{6}{1!} = \frac{6}{1!}$ $\alpha_2 = \frac{4!}{2!} = \frac{4 \cdot 3 \cdot 2!}{2!} = \frac{12}{12}$
 $\alpha_3 = \frac{5!}{3!} = \frac{5 \cdot 4 \cdot 2!}{3!} = \frac{20}{120}$ $\alpha_4 = \frac{6!}{4!} = \frac{6 \cdot 5 \cdot 4!}{4!} = \frac{30}{120}$

$$Q_{10} = \frac{(n+3)!}{(n-1)!} = \frac{4!}{0!} = \frac{5!}{11 \cdot 10 \cdot 9!}$$

$$Q_{10} = \frac{(1+3)!}{(1-1)!} = \frac{13!}{0!} = \frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9!}{11}$$

$$Q_{10} = \frac{(10+3)!}{(1-1)!} = \frac{13!}{0!} = \frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9!}{11 \cdot 10 \cdot 9!}$$

$$= 17160$$

Find the first 5 terms of the sequence defined by
$$Q_{N} = 4Q_{N-1} - 1$$
, $Q_{1} = 5$
 $Q_{1} = 5$
 $Q_{2} = 4Q_{1} - 1 = 4(5) - 1 = 19$
 $Q_{3} = 4Q_{2} - 1 = 4(19) - 1 = 15$
 $Q_{4} = 4Q_{3} - 1 = 4(19) - 1 = 299$
 $Q_{5} = 4Q_{4} - 1 = 4(29) - 1 = 1195$

```
Given 0_{M} = 2N + 5

(1) write the first 4 terms.

(2) find 0_{50} = 2(50) + 5 = 105

(3) Is this an arithmetic sequence? if Yes, Common difference

(4) find S_{50} = S_{10} = 105

(4) find S_{50} = S_{10} = 105

(5) S_{10} = S_{10} = 105

(6) S_{10} = S_{10} = 105

(7) S_{10} = S_{10} = 105

(9) S_{10} = S_{10} = 105

(10) S_{10} = S_{10} = 105

(11) S_{10} = S_{10} = 105

(12) S_{10} = S_{10} = 105

(13) S_{10} = S_{10} = 105

(14) S_{10} = S_{10} = 105

(15) S_{10} = S_{10} = 105

(15) S_{10} = S_{10} = 105

(16) S_{10} = S_{10} = 105

(17) S_{10} = S_{10} = 105

(18) S_{10} = S_{10} = 105
```

```
Consider

3, 10, 17, ----, 437

1) Is this an arithmetic sequence? Yes

2) find Q_1 \stackrel{!}{\in} d. Q_1=3, d=10-3=7
d=17-10=7

3) find a general formula for the 11th term.

Q_n = Q_1 + (n-1)d
Q_n = 3 + (n-1)^{-7} = 3 + 7n - 7 = 7n - 4
Q_{n} = 7n - 4
```

4) find
$$0.80$$

$$0.00 = 7(20) - 4 = 136$$
5) what term is 437?
$$0.00 = 437$$

$$0.00 = 437$$

$$0.00 = 437$$

$$0.00 = 437$$

$$0.00 = 437$$

$$0.00 = 437$$

$$0.00 = 437$$

$$0.00 = 437$$

$$0.00 = 441$$

$$0.00 = 437$$

$$0.00 = 441$$

$$0.00 = 437$$

$$0.00 = 441$$

$$0.00 = 437$$

$$0.00 = 441$$

$$0.00 = 437$$

$$0.00 = 441$$

$$0.00 = 437$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 437$$

$$0.00 = 441$$

$$0.00 = 437$$

$$0.00 = 441$$

$$0.00 = 437$$

$$0.00 = 441$$

$$0.00 = 437$$

$$0.00 = 441$$

$$0.00 = 437$$

$$0.00 = 441$$

$$0.00 = 437$$

$$0.00 = 441$$

$$0.00 = 437$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 437$$

$$0.00 = 441$$

$$0.00 = 437$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 = 441$$

$$0.00 =$$

Find the Sum:
$$\frac{40}{N=1}$$
 (2-5n)

 $0.1 = 2 - 5(1) = -3$

Arithmetic Sequence

 $0.2 = 2 - 5(2) = -8 \implies 0.1 = -3$, $0.1 = -5$

Now we need to

 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2 - 5(3) = -13$
 $0.3 = 2$

How long does it take to pay off a loan of \$3960 if we pay \$50 first month, \$60 Second month, \$70 third month, and So on.

50,60,70,---- = 3960

How many Payments?

Anthmetic Sequence al=50, d=10

find n where $S_{N} = 3960$

$$S_{n} = \frac{\pi}{2} \left[\alpha_{1} + \alpha_{n} \right]$$

$$S_{n} = \frac{\pi}{2} \left[2\alpha_{1} + (n-1)d \right]$$

$$3960 = \frac{\pi}{2} \left[2.50 + (n-1).10 \right]$$

$$3960 = \frac{\pi}{2} \left[100 + 100 - 10 \right]$$

$$3960 = \frac{\pi}{2} \left[90 + 100 \right]$$

$$3960 = \pi (5n + 45)$$
Divisible by 5

$$792 = \pi (n + 9)$$

$$m^{2}+9n - 792 = 0$$
Using Quadratic formula
$$0 = 1 \quad b = 9 \quad C = -792$$

$$b^{2}-4ac = 9^{2}-4(1)(-792) = 3249$$

$$m = \frac{-b \pm \sqrt{b^{2}}-4ac}{2a} = \frac{-9 \pm \sqrt{3249}}{2} = \frac{-9 \pm 57}{2}$$

$$n = \frac{-9+57}{2} = \frac{48}{2} = \frac{24}{2}$$

$$n = \frac{-9+57}{2} = \frac{48}{2} = \frac{24}{2}$$

$$24 \text{ monthly Payments.} \quad \text{Not applicable}$$

Griven 5, 10, 20, ---.

Owrite the next 4 terms

5, 10, 20, 40, 80, 160, 320 ---

Owhat kind of Sequence? Arithmetic or

Geometric

$$a_1 = 5$$
, Common $r = 2$
 $ratio$
 r

Common

 $ratio$
 r
 $a_1 = a_1 \cdot r^{-1}$
 $a_1 = a_2 \cdot r^{-1}$
 $a_2 = a_3 \cdot r^{-1}$
 $a_3 = a_4 \cdot r^{-1}$
 $a_4 = a_5 \cdot r^{-1}$
 $a_5 = a_5 \cdot r^{-1}$
 $a_6 = a_6 \cdot r^{-1}$
 $a_7 = a_7 \cdot r^{-1}$

3 find
$$a_{10}$$
 $a_{0} = a_{1} r^{10-1}$
= 5.2 $\Rightarrow a_{10} = 2560$

(4) Find
$$S_{10}$$
 $S_{10} = \frac{\Omega_1(1-r^{10})}{1-r}$

(a) Find
$$S_{10}$$
 $S_{10} = \frac{\Omega_{1}(1-r^{10})}{1-r}$
 $S_{10} = \frac{5(1-2^{10})}{1-2}$ $S_{10} = 5115$

$$Q_1 = 4$$
, $Q_2 = 12$

1) find Common ratio r.

$$r = \frac{\alpha_2}{\alpha_1} = 3$$

2) find
$$0_6 = 0_1 \cdot r_5 = 972$$

3) find
$$S_8$$

$$S_8 = \frac{Q_1(1-r^8)}{1-r} = \frac{4(1-3^8)}{1-3} = -2(1-3^8)$$

Consider a geometric sequence with
$$Q_1 = -15 \quad , \quad Q_4 = -\frac{5}{9}$$
1) find the Common ratio r .

we know $Q_N = Q_1 \cdot r^{N-1}$ $Q_4 = Q_1 \cdot r^{3}$
2) find $Q_6 = Q_1 \cdot r^{5}$

$$= -15 \left(\frac{1}{3}\right)^{5}$$

$$= -15 \left(\frac{1}{3}\right)^{5}$$

$$r^3 = \frac{7}{-15}$$
3) find $Q_7 = Q_7 \cdot r^{5}$

$$Q_6 = Q_7 \cdot r^{5}$$

$$Q_7 = Q_7 \cdot r^{5}$$

$$Q_8 = Q_7 \cdot r$$

$$S_{n} = \frac{\alpha_{1}(1-r^{n})}{1-r}$$

$$S_{1} = \frac{-15(1-(\frac{1}{3})^{2})}{1-\frac{1}{3}} = \frac{-15(1-\frac{1}{3^{2}})}{\frac{2}{3}}$$

$$= -\frac{45}{2}(1-\frac{1}{3^{2}})$$

$$= \frac{-5465}{243}$$

Consider the Sequence
$$a_1$$
, a_1r , a_1r^2 , a_1r^3 ,

If add the terms

 $a_1 + a_1r + a_1r^2 + a_1r^3 + ...$

Infinite Geometric Series

If $|r| < 1$, then the Sum of the terms $S = \frac{a_1}{1-r}$

If $|r| \ge 1$, there is no Sum.

find the Sum

$$1000 + 500 + 250 + ---$$

$$S_{\infty} = S = \frac{01}{1 - r} \qquad 0.1 = 1000$$

$$\Gamma = \frac{500}{1000} = \frac{1}{2}$$

$$S = \frac{1000}{1 - \frac{1}{2}} \qquad \Gamma = \frac{250}{500} = \frac{1}{2}$$

$$\Gamma = \frac{1000}{\sqrt{2}} = \frac{1}{2}$$

$$\int_{1}^{1} d \cdot 3 = \int_{3}^{1} 333333 - \cdots$$

$$= \cdot 3 + \cdot 03 + \cdot 003 + \cdot 0003 + \cdots$$

$$0 + \frac{3}{3} = \frac{3}{3} = \frac{1}{3}$$

$$S = \frac{01}{1 - r} = \frac{3}{1 - \frac{1}{10}} = \frac{3}{\frac{9}{10}} = 3 \cdot \frac{10}{9}$$

$$= \frac{3}{9} = \frac{1}{3}$$

write 1.825 as a reduced fraction

1.825 = 1.825 25 25 25 25 25 25 ---

= 1.8 + .025 + .00025 + .0000025 + .

= 1.8 +
$$\frac{5}{198}$$

$$= \frac{8}{10} + \frac{5}{198}$$

$$= \frac{807}{990}$$

$$= \frac{25}{1-1} = \frac{5}{198}$$

$$= \frac{25}{198} = \frac{5}{198}$$

write .78 in reduced fraction.

.78 = .7888888---
=.7 + .0888888888---
=.7 + .08 + .008 + .0008 + .00008+--
=.7 +
$$\frac{.08}{1-\frac{1}{10}}$$
= $\frac{7}{10}$ + $\frac{.08}{9}$ = $\frac{7}{10}$ + $\frac{.8}{9}$ = $\frac{7}{10}$ + $\frac{.8}{10}$ = $\frac{7}{10}$ + $\frac{.8}{10}$ = $\frac{7}{10}$ + $\frac{.8}{10}$ = $\frac{7}{10}$ = $\frac{7}{10}$ + $\frac{.8}{10}$ = $\frac{7}{10}$ = $\frac{1}{10}$ = $\frac{7}{10}$ = $\frac{1}{10}$ =

Mathematical Induction

working with mathemical statement

Pn, n is a positive integer.

To show that it works

1) we verify that P1 works

2) we assume that Pk works,

then we show that Pk+1 works.

Prove by mathematical induction:

$$2 + 6 + 10 + - - \cdot + (4x-2) = 2x^2$$

 $P_1 \rightarrow x = 1$ LHS RHS
 $2 = 2(1)^2$
 $P_2 \rightarrow x = 2$ $2 + 6 = 2(2)^2$
 $P_3 \rightarrow x = 3$ $2 + 6 + 10 = 2(3)^2$
Assume Pk works
 $2 + 6 + 10 + - - \cdot + (4x-2) = 2x^2$
 $2 + 6 + 10 + - - \cdot + (4x-2) + (4x+2) = 2x^2$
 $2 + 6 + 10 + - - \cdot + (4x-2) + (4x+2) = 2x^2$
 $2 + 6 + 10 + - - \cdot + (4x-2) + (4x+2) = 2x^2$
 $2 + 6 + 10 + - - \cdot + (4x-2) + (4x+2) = 2x^2$
 $2 + 6 + 10 + - - \cdot + (4x-2) + (4x+2) = 2x^2$
 $2 + 6 + 10 + - - \cdot + (4x-2) + (4x+2) = 2x^2$
 $2 + 6 + 10 + - - \cdot + (4x-2) + (4x+2) = 2x^2$
 $2 + 6 + 10 + - - \cdot + (4x-2) + (4x+2) = 2x^2$
 $2 + 6 + 10 + - - \cdot + (4x-2) + (4x+2) = 2x^2$
 $2 + 6 + 10 + - - \cdot + (4x-2) + (4x+2) = 2x^2$
 $2 + 6 + 10 + - - \cdot + (4x-2) + (4x+2) = 2x^2$
 $2 + 6 + 10 + - - \cdot + (4x-2) + (4x+2) = 2x^2$
 $2 + 6 + 10 + - - \cdot + (4x-2) + (4x+2) = 2x^2$
 $2 + 6 + 10 + - - \cdot + (4x-2) + (4x+2) = 2x^2$
 $2 + 6 + 10 + - - \cdot + (4x-2) + (4x+2) = 2x^2$
 $2 + 6 + 10 + - - \cdot + (4x-2) + (4x+2) = 2x^2$
 $2 + 6 + 10 + - - \cdot + (4x-2) + (4x+2) = 2x^2$
 $2 + 6 + 10 + - - \cdot + (4x-2) + (4x+2) = 2x^2$
 $2 + 6 + 10 + - - \cdot + (4x-2) + (4x+2) = 2x^2$
 $2 + 6 + 10 + - - \cdot + (4x-2) + (4x+2) = 2x^2$
 $2 + 6 + 10 + - - \cdot + (4x-2) + (4x+2) = 2x^2$

Prove by mathematical induction:

$$1 + 3 + 3^{2} + 3^{3} + \dots + 3^{n-1} = \frac{1}{2}(3^{n}-1)$$

 $0 = 3^{n-1}$
 0

Assume it works for PK

1 +3 +3² +3³ + --- +3 =
$$\frac{1}{2}(3^{k}-1)$$

Add the next term of Pattern to
both sides

1 +3 +3² +3³ + --- +3 +3^k = $\frac{1}{2}(3^{k}-1)$ +3

 $\Rightarrow \frac{1}{2}(3^{k}-1) + \frac{2}{2} \cdot 3^{k} = \frac{1}{2}(3^{k}-1) + \frac{1}{2} \cdot 2 \cdot 3^{k}$
 $\Rightarrow \frac{1}{2}(3^{k}-1) + \frac{2}{2} \cdot 3^{k} = \frac{1}{2}(3^{k}-1) + \frac{1}{2} \cdot 2 \cdot 3^{k}$

Final Ans

 $\Rightarrow \frac{1}{2}(3^{k}-1) + 2 \cdot 3^{k} = \frac{1}{2}(3^{k}-1) = \frac{1}{2}(3^{k}-1)$

assume it works for
$$N = K$$

$$5^{K} - 1 = N \cdot 4$$
we need to show now that
$$5^{K+1} - 1 = M \cdot 4$$

$$5 \cdot 5^{K} - 1 = (4 + 1)5^{K} - 1$$

$$= 4 \cdot 5^{K} + 1 \cdot 5^{K} - 1$$

$$= 4 \cdot 5^{K} + 1 \cdot 5^{K} - 1$$

$$4 \cdot 5^{K} + 1 \cdot 5^{K} - 1$$

$$= 4 \cdot 5^{K} + 1 \cdot 5^{K} - 1$$

$$= 4 \cdot 5^{K} + 1 \cdot 5^{K} - 1$$

$$= 4 \cdot 5^{K} + 1 \cdot 5^{K} - 1$$

$$= 4 \cdot 5^{K} + 1 \cdot 5^{K} - 1$$

$$= 5^{K+1} - 1 = 4 \cdot 4$$

Binomial Thrus
$$(a+b)^{1} = a^{2} + 4a^{3}b + 6a^{2}b^{2} + 4a^{3}b^{2} + 6a^{2}b^{2} + 6a$$

Binomial coef.
$$\binom{n}{s} = \frac{n!}{r! \cdot (n-r)!}$$

In Your calc.

$$N(r = \binom{n}{r}) = \frac{2!}{r!(n-r)!}$$
Find $\binom{8}{s} = \binom{2}{s} = \frac{2!}{s!} \cdot (s-s)! = \frac{5!}{2 \cdot 3!}$

$$= \frac{10}{s!}$$

Binomial Thrm
$$(a+b)^{n} = \binom{n}{0} \binom{n}{0} \binom{n}{0} + \binom{n}{1} \binom{n-1}{0} \binom{1}{0} + \binom{n}{2} \binom{n-2}{0}^{2}$$

$$+ \binom{n}{3} \binom{n-3}{0} \binom{3}{0} + \cdots + \binom{n}{3} \binom{n}{0} \binom{n}{0}^{n}$$
Expansion
$$(a+b)^{2} = \binom{n}{3} \binom{n}{0} \binom{n}{0} + \binom{n}{2} \binom{n}{0} \binom{n}{0}$$

find the tenth term of

$$(y^3 + 2z^2)^{14}$$

find both term of $(a+b)^{14}$
 $(y^3 + 2z^2)^{14}$
 $(y^3 + 2z^2)$
 $(y^3 + 2z^2)$

$$\int_{0}^{\infty} |x| \langle 1$$

$$(1+x)^{3} = 1 + x + \frac{m(x-1)x^{2}}{2!} + \frac{m(x-1)(x-2)x^{3}}{3!}$$

$$(1.5)^{2} = x + 3(.5) + \frac{3(3-1)(.5)^{2}}{2!} + \frac{3(3-1)(3-2)x^{3}}{3!}$$

$$= 1 + 1.5 + 3(.5)^{2} + 1.(.5)^{3} + ---$$

$$= 1 + 1.5 + .75 + .125 \approx 3.375$$